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Metatranscriptomics focuses on community activity

Metatranscriptomics exploits RNA-Seq to determine which genes and pathways

are being actively expressed within a community

Genes involved in pathways associated with \

cell wall biogenesis _ _
Metatra nscriptomics can

reveal active functions
(knowing the taxa
responsible is unimportant)

= Pet i & It can also reveal which taxa
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Metatranscriptomics through RNA Seq
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Metatranscriptomics: Challenges

In a typical RNA-Seq experiment applied to a single eukaryotic organism, mRNA is
isolated. After fragmentation and sequencing, reads are mapped to a reference

genome using standard software such as MAQ and BWA to provide: 1) support
that the transcript is expressed; 2) the relative abundance of the transcript; and 3)

the presence and abundance of isoforms
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/For microbiome samples we have the following problems: N
a) Lack of a polyA signal makes it difficult to isolate bacterial mMRNA and
resulting in (massive) rRNA contamination
b) Environmental microbiome samples lack reference genomes making it
\_ difficult to map reads back to their source transcripts )
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A typical metatranscriptomic analytical
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Preparing sample for sequencing

Bacterial mMRNA’s lack a polyA tail so how to remove abundant rRNA species?

Once RNA has been extracted, several kits are available to remove \
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Host mRNAs can also prove challenging — can also be informative!




Generating reads

[How many reads are "enough”?}
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While PB and MiSeq provide
long reads useful for annotation
HiSeq (or NextSeq) provide
sequencing depth and offer
possibility of multiplexing



Read processing - filtering

Trimmomatic uses a sliding window

/ \ approach from the 5" end to identify low
To identify reads derived quality regions which are then trimmed
from mRNA bioinformatics from the 3" end. Reads < 36 bp are
pipelines need to be in discarded

place that remove

contaminating reads: ‘
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Fraction of contigs with significant sequence similarity

Read processing - Assembly

50) to a known protein

(BLAST bit score =

contigl contig?
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Assembly improves
annotation accuracy

N Trinity appears to provide best
) performance in terms of reads
that can be annotated
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Chimera’s, misassembled contigs, can become a problem due to reads
derived from orthologs from different species




Read processing — functional annotation

/One solution is to \

work in peptide
space and use
BLASTX to search
protein databases -
this is very time
consuming and
requires cloud/cluster
computing

Other solutions
USEARCH/VSEARCH
or DIAMOND (issues
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= Unmapped reads
= BLAST
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=BWA

Even with BLAST many reads remain unannotated

Can be improved with longer read length



Read processing — converting mappings to expression

To normalize expression levels to account for differences in gene length, read
counts are converted to Reads per kilobase of transcript mapped (RPKM)

Expression is biased for gene length (longer transcripts
should have more reads) to normalize, reads are converted

to Reads per Kilobase of transcript per million reads

mapped
RPKMgepen = 10° Coepen / NL
[ ] Cgenea = NUMber of reads mapped to geneA
] N = total number of.rea.ds .
B L = length of transcript in units of Kb

Several software tools available to do mapping and calculate normalized
expression measurements across different samples including Bowtie and Cufflinks




Read processing — taxonomic annotation

/Alignment based methods such as BLAST and BWA can fail where we

lack suitable reference genomes — particularly for short read datasets
where assignments may be ambiguous

Compositional methods (e.g. nt frequency, codon bias) offer alternative
Qtrategies
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enrichment of microorganisms

iemeng Liu'??, Haifeng Wang'*, Hongxing Yang'*, Yizhe Zhang®, Jinfeng Wang®,
ATG GCA fomer o T s+ Hongxing Yang 9 9 Wang
TGC CAG GTA s, °The T-Life R
Sminges,
AGT TAC

Research Article

}
‘_-ll §I

N-Mer Frequency Profiles

Gail Rosen,' Elaine Garbarine,' Diamantino Caseiro,?

of Surface
e e ce
Sh Inst|
NBC
Metagenome Fragment Classification Using

AAA AAC AAG AAT .. TTT
H _ Nearest neighbours
ere a sequences is 4 identification of hiah-confi .
254 methods then try to MetaCV aesignments for metageromio data
classified into - Norman . MocDonatDanovan . P and o .S
. a s S Ig n a S e q u e n Ce to Faculty of Computer Science, Dalhousie University, 6050 University Avenue, PO BOX
frequencies of 3-mers i

the genome with the o
closest distribution RITA



Visualizing results
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Metabolic pathways are among the most highly conserved and best characterized systems ]
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Bioinformatics

Functional analysis of metagenomes and

metatranscriptomes using SEED and KEGG

MG-RAST and MEGAN are automated metagenomic annotation tools that rely on KEGG
A major problem with KEGG pathway definitions is that the boundaries of pathways are
arbitrarily defined and links between pathways (i.e. functional relationships) can be lost




Read processing — Gist
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Statistical considerations

4 N

There is no dedicated software or statistical tool for statistical
comparisons of metatranscriptomic datasets

- Number of biological replicates? (preferably at least three)
- Differential expression of individual genes

- Gene set enrichment analyses

Ultimately metatranscriptomics could be viewed as hypothesis
generating requiring subsequent targeted validation
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Statistical considerations

4 A

While there are no dedicated tools for metatranscriptomics
analyses, tools used for RNA Seq offer potential

- DESeq, EdgeR, ALDEXx

- Alternatively simply rely on fold change (Gfold)

- Challenges include which genes to include (minimum RPKM?)

Differentially expressed genes can be subsequently analysed
through Gene Set Enrichment Approaches

- v
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