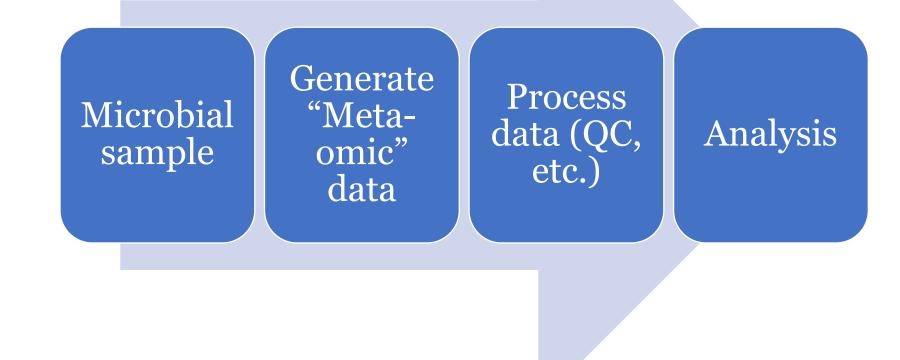
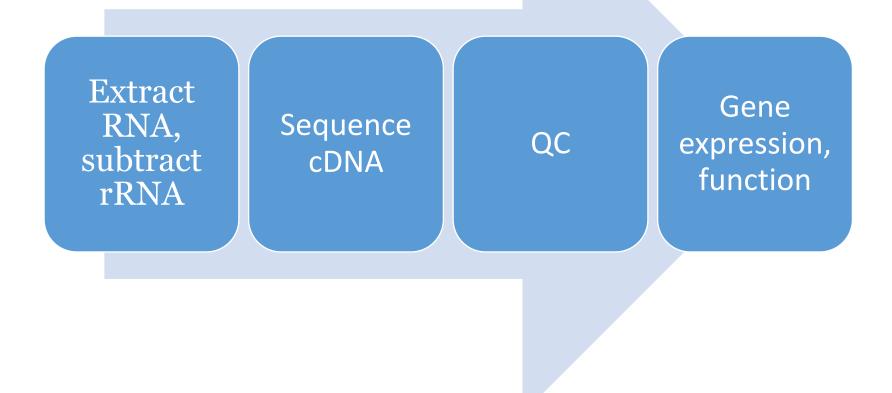

CBC Data Therapy


Metagenomics Discussion

Computational Biology Core

General Workflow


Metagenomics

Extract DNA Sequence random fragments QC, assemble, annotate Diversity, function analysis

Metatranscriptomics

Sequencing

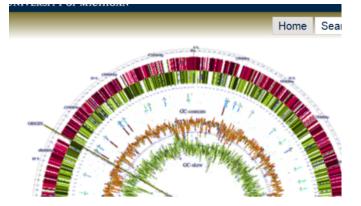
Ion Torrent

Roche 454

Illumina *Seq

Pacific Biosciences

Nanopore

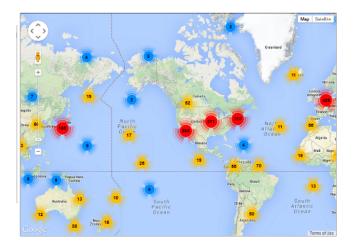

Resources (16S)

phylum "Armatimonadetes" (0/1149/0) phylum "Verrucomicrobia" (0/10424/0) phylum "Acidobacteria" (0/15997/0) phylum Firmicutes (0/470534/0) phylum Cyanobacteria/Chloroplast (0/25864/0 phylum Marinimicrobia (0/997/0) phylum Aminicenantes (0/1546/0) phylum Omnitrophica (0/20/0) phylum Acetothermia (0/44/0) phylum Poribacteria (0/104/0) phylum Atribacteria (0/69/0) phylum Cloacimonetes (0/179/0) phylum Candidatus Calescamantes (0/3/0) phylum candidate division WPS-1 (0/815/0) phylum candidate division WPS-2 (0/116/0) phylum Hydrogenedentes (0/460/0) phylum candidate division ZB3 (0/76/0) phylum Ignavibacteriae (0/774/0) phylum Nitrospinae (0/537/0) Archaea Outgroup (0/1/0) unclassified_Bacteria (0/34557/0) domain Archaea (0/33971/0) phylum "Crenarchaeota" (0/1954/0) phylum "Euryarchaeota" (0/16984/0) phylum "Korarchaeota" (0/92/0) ohylum "Nanoarchaeota" (0/139/0) RDP II: Cole et al. *NAR* (2013)

phylum Latescibacteria (0/556/0)

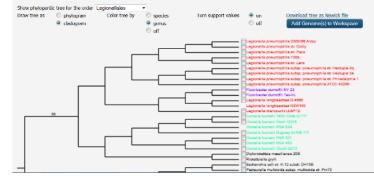
SILVA: Quast et al. *NAR* (2015)

rrnDB: Stoddard et al. *NAR* (2016)



Resources (Genomes)

rvicw [12808] E	ukaryotes (2291)	Prokaryo	otes (36211) VI	uses [4714]	Plasmids (6964) Organ	olios (6821)					
Filters activate	d. Clear all to sh	ow 36211 it	tema.				Partial: Eaclud	Anoma	ious: Esclu	de Level	ne 🕅 An 🕅 (
DrganismiName	Strain	CladeID	BioSample	DioProject	Group	SubGroup - All Prokaryole *	Assembly	Level	Size (Mb)	GC's	Replicans
Chrysonthoman conversion physiophome	OYV	21083	8/MD0019609	PRJ8/4224116	Tennikolog	Malicates	004_000744065.1	•	0.739552	27.50	
Deinscreeux salf Cha vital 2014	NS	33163	8/44/403237573	PRJK/4204116	Deinococcus Thomas	Deinacocci	004_001087955.1	٠	3.23998	70.20	dianasan
Absoluption detective ATDC 49175	//TOC 49175	25146	3/M/X02406601	PRJNA55729	Finitutes	Bxa	904_0019075.2	•	2 (4344	47.00	
Acaticomet, phytosolid DSM 14247	DSM MON7	22194	SAM90441281	PRONA10300/	Actorobacteria	Admobactana	OCA_00076265.1	٠	2.41352	62.30	
Acaryschiede an OCMET (410	CONSE 5411	132:0	8/4M/400016772	PEUNA28283	Cyandactera	Oscillate inplycidww	004_00033775.2		7.87548	47,10	
Acaryochicia marina MSIC 1997	MDIC 11017	19230	SAMPROPERTY.	PRIMINIC?	Gyanobettyria	Ozzillansisphysichae	acifatterature (•	0.3996	46.99	chromesone plasmid pite plasmid pite Show all 10 s
Acelytra celluloh/toux C32	one	20217	SAM REPORT	PRINKS1633	Finians	Cleanida	GCA_000179786.2	•	6 15572	36.50	
Assistanting acut ATOD 23746	A100 25/48	12/04	SAM/R2258453	PRIMATERIA	Protectoria	Alphaproleotactions	004_0087046.1	•	3.88377	57.10	
Acctatactic accti NEI 60 14815	NDRC 19916	19754		PRINATOTIC	Providences	Alphaprotectures	GCA_000183650-1		3 17798	ar.an	
Acetobectes aceti 1023	1023	19796	SAMPLING LANS	PR.8//224116	Presobertoia	Alabapatenhactoria	GCA 000691125.1		3.0146	62.60	

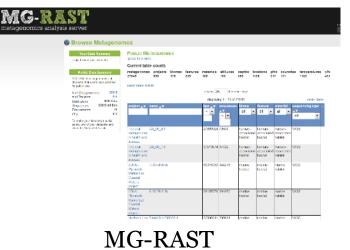

GenBank Genomes

GOLD (JGI metagenomes)

Once an order to view its multi-gene phylogenetic tree in other phylogene or datagram format. Use controls above the tree to show or hide support values, and to color the tree according to genus or spectres. Elick on a spectre same to visit that spectre overview page. To learn more about intracting with trees and the method used to create them, pieces exertifying the spectre.

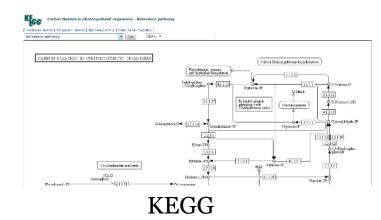
PATRIC (host and bacterial)

EnsembiGenomes Jourus <mark>Genemor</mark> Data types Data access FAGs										🙆 • Dacteria Pr	otinta Fungi
Genomes * Alapsace C Backers C Back	Genomes Freenth Genomes meterials an Species	Divis	ion	IP Interfacilent Pari Compara No		Peptide Align	mer	tis Genome Acty		Dither Alignme	nta Apply
Prenter Provinte Provinte Genomes with periods without data Genomes with periods comparative genomics data	Wildows 1 may be used weak tool Speakes Abachophus detectives ALCC 4917/6		Taxonorry ID 992010	AS2416017v2	÷	Gereinäld 2014-01-ENA	Å T	Variation 1	Pan Compara	Genore Algoritatio	Peptide Alignments
 Genomes in part inscrimite company Genomes with whole percent adoptimetic Genomes with second coloring; 	Acaryochloris marina MBIC11017 Acalobacterscore bacterium	Dactoria Bactoria	<u>329/25</u> 1054213	ASM1010v1 ASM24507v1		2007 10 LNA 2012-01-ENA		8	8	8	8
	AL2044 Acelohacierum sociali (2014) 1020	Bactoria		ASM2476Dv1		2012-02-ENA		8	0	8	8
	Acelobacier aceli 1023 Acelobacier aceli NBRC 14818	Bactoria Bactoria	1457333 937703	Aace(1023_1		2014-05-ENA 2015-03-ENA	I	8	8	8	8
	Acelobacter malorum Acelobacter peoleumanus 2000 Acelobacter peoleumanus	Bactoria Bactoria	<u>175001</u> 1256844	ASM74335v1		2014-00-ENA 2013-08-ENA	+	8	8	8	8

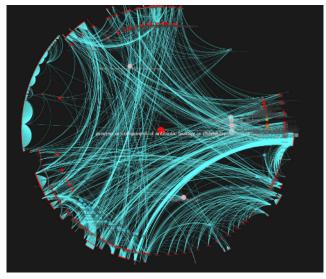

Ensembl Genomes

Resources (Metagenomes)

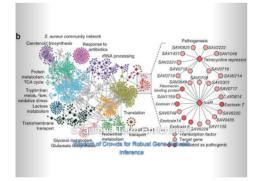
EBI metagenomics



HMP DACC



Resources (Function)



		nalign 击 Downloa	d ffradd to besket 🖉 Colorus 🗲		4 1 to 25 of 12,803	Show 25
Reviewed (12,803) 🛛 🕷	E totry	Entry name 🕈	Protein names 🕈	💹 Gene names 🛡	Organism 🗣	tength 🛡
en fad	E SUBALA	SUNU SALAA	5' descynactestidase White	FIPH SOAD REALS	Sahr one la agar a (stram SL485)	199
opular organisms V AR (612)	[1] Q279423	SUNU SALCH	5' deaxynadeatidase Yilatt	убы, эсн 2333	Sain one la cholanoesets (staatin SC 367)	199
NCH (882) 9.74 (713)	ET 493.94	SUNU_SADAR	5' decorymodecolodase: Yibit	yIbR, SAR_COSES	Salmonella ar zonae (strain ALCC BAA 731 / CDC346 56 / R5K2580)	199
N FR (722)	E 108013	SDNU_SALTP	S-deoxynucleoridase YBB	ythB, SEN2114	Salmone la entertitois PT4 (strain P125105)	199
9.02 (684)	Bisco Barrow	SDNU SALS2	S'-dessynscientidase ¥BR	yth8, 862361	Saimone la gallicarium (strain 287/91 / MCTC 13366)	199
er organisme	B45204	DDHU SALAS	5'-deaxynacleotidase #fatt	у fbit. 868.254 A2517	Salmone la newport (strain SL254)	190
arch torms	E PUPP	ADNU_SALID	5' dooxynactoolidas: YihR	yibB, SellA_02572	Salmone la healeberg (strain S1476)	196
a fsahr ond laft as.	E 1678.0	ADNU_SALDC	5'-deaxynucleotidase YfbR	ythR, SeD_A2630	Sairrone la duble (simie CT_02021033)	100
ew by	E 00005	SDNU_SALRC	S'-decoynacteoridase YBR	ythB, SPC_1376	Saimone la paratyphi C (strain R/S1594)	199
ew by	ANNUTS	SDBU_SALPB	St-denxynucleotidase YBB	yth8, SP\3,00041	Swimone la paratyphi B (strain 6700 566+1290 / 5003)	10
eworda.	03V283	SDRU SALPA	S'-designucleatidase White	yfbill, SPAC532	Sairronella paratyphi & Estrain ATCC 5150 / SAR542)	195

UniProtKB

CARD

Gene Ontology

Institute for Systems Genomics: Computational Biology Core bioinformatics.uconn.edu

General Challenges/Considerations

- Sequencing errors
 - Error rates, error *type* (PacBio: 10% random, Illumina 0.1% substitution)
- Chimeras
 - Amplification artifacts, cloning of restriction fragments
- 16S: different V regions give different results
- Different sequencing platforms / sampling conditions ALSO give different results
- Workflow complexity / plethora of tools

General Challenges/Considerations

- Strain-level diversity in metagenomes will often be missed by amplicon (esp. short-read) and shotgun approaches
 - This may be especially important **between** samples
- Taxonomy
 - Database predictions (RDP)
- Functional Annotation
 - Coverage versus accuracy

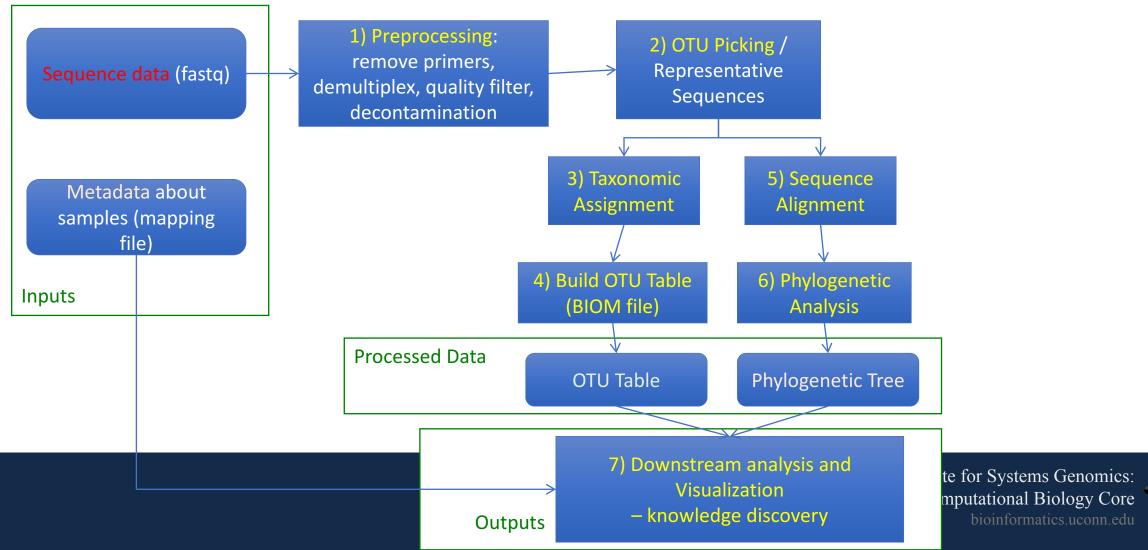
- Eukaryotic Organisms (protists, fungi)
 - 18S (http://www.arb-silva.de)
 - ITS (<u>http://www.mothur.org/wiki/UNITE_ITS_database</u>)
- Bacteria
 - CPN60 (<u>http://www.cpndb.ca/cpnDB/home.php</u>)
 - ITS (Martiny, Env Micro 2009)
 - RecA gene
- Viruses
 - Gp23 for T4-like bacteriophage
 - RdRp for picornaviruses

Faster evolving markers used for strain-level differentiation

- Focus on contamination reduction during preparation
- 16S rRNA contains 9 hypervariable regions (V1-V9)
- V4 was chosen because of its size (suitable for Illumina 150bp paired-end sequencing) and phylogenetic resolution
- Different V regions have different phylogenetic resolutions

 giving rise to slightly different community composition results
- Sequencing:
 - MiSeq capacity allows multiple samples to be combined into a single run
 - Number of reads needed to differentiate samples depends on the nature of the studies
 - Unique DNA barcodes can be incorporated into your amplicons to differentiate samples

• QIIME (<u>http://qiime.org</u>)


Mothur (<u>http://www.mothur.org</u>)

Bioinformatics Overall Bioinformatics Workflow

QIIME versus MOTHUR

Mothur
Single program with minimal external dependency
Reimplementation of popular algorithms
Easy to install and setup; work best on single multi-core server with lots of memory
Less scalable
Easy to learn and works the best with built-in tools
http://www.mothur.org/wiki/MiSeq_SOP

Metagenomics

- Goal: Identify the relative abundance of different microbes in a sample given using metagenomics
- Problems:
 - Reads are all mixed together
 - Reads can be short (~100bp)
 - Lateral gene transfer
- Two broad approaches
 - 1. Binning Based
 - 2. Marker Based

Metagenomics

- Attempts to "bin" reads into the genome from which they originated
- Composition-based
 - Uses GC composition or k-mers (e.g. Naïve Bayes Classifier)
 - Generally not very precise and not recommended
- Sequence-based
 - Compare reads to large reference database using BLAST (or some other similarity search method)
 - Reads are assigned based on "Best-hit" or "Lowest Common Ancestor" approach

LCA

- Use all BLAST hits above a threshold and assign taxonomy at the lowest level in the tree which covers these taxa.
- Notable Examples:
 - MEGAN: http://ab.inf.uni-tuebingen.de/software/megan5/
 - One of the first metagenomic tools
 - Does functional profiling too!
 - MG-RAST: <u>https://metagenomics.anl.gov/</u>
 - Web-based pipeline (might need to wait awhile for results)
 - Kraken: https://ccb.jhu.edu/software/kraken/
 - Fastest binning approach to date and very accurate.
 - Large computing requirements (e.g. >128GB RAM)

Metagenomic Assembly

 "MetaSPAdes showed the overall best assembly size statistics while also capturing a relatively large fraction of the expected diversity. The usage of this tool is relatively simple and convenient, being basically identical to that of SPAdes, and largely flexible regarding the format of the input data. A drawback may be the reduced sensitivity for micro diversity. However, for the majority of metagenome research questions, accurate and representative consensus genomes of species should be more than sufficient."

