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Sanger Ion Torrent Roche 454

Illumina *Seq Pacific Biosciences Nanopore



Resources	(16S)
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SILVA: Quast et al. 
NAR (2015)

rrnDB: Stoddard et al. 
NAR (2016)

RDP II: Cole et al. 
NAR (2013)
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PATRIC (host and bacterial)
GenBank Genomes

GOLD (JGI metagenomes) Ensembl Genomes



Resources	(Metagenomes)
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EBI metagenomics
MG-RAST

HMP DACC
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KEGG

UniProtKB

CARD

Gene Ontology



General	Challenges/Considerations
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• Sequencing errors
• Error rates, error type (PacBio: 10% random, Illumina – 0.1% substitution) 

• Chimeras
• Amplification artifacts, cloning of restriction fragments

• 16S: different V regions give different results
• Different sequencing platforms / sampling conditions ALSO give 

different results
• Workflow complexity / plethora of tools



General	Challenges/Considerations
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•Strain-level diversity in metagenomes will often be 
missed by amplicon (esp. short-read) and shotgun 
approaches
• This may be especially important between samples

•Taxonomy
•Database predictions (RDP)

•Functional Annotation
• Coverage versus accuracy
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• Eukaryotic	Organisms	(protists,	fungi)
• 18S	(http://www.arb-silva.de)
• ITS	(http://www.mothur.org/wiki/UNITE_ITS_database)

• Bacteria
• CPN60	(http://www.cpndb.ca/cpnDB/home.php)
• ITS	(Martiny,		Env Micro	2009)
• RecA gene

• Viruses
• Gp23	for	T4-like	bacteriophage
• RdRp for	picornaviruses

Faster	evolving	markers	used	for	strain-level	differentiation



Marker	Genes

Institute for Systems Genomics: 
Computational Biology Core

bioinformatics.uconn.edu

• Focus	on	contamination	reduction	during	preparation
• 16S	rRNA contains	9	hypervariable	regions	(V1-V9)
• V4	was	chosen	because	of	its	size	(suitable	for	Illumina	150bp	paired-end	sequencing)	and	
phylogenetic	resolution

• Different	V	regions	have	 different	phylogenetic	resolutions	
– giving	rise	to	slightly	different	community	composition	results

• Sequencing:
• MiSeq capacity	allows	multiple	samples	to	be	combined	into	a	single	run
• Number	of	reads	needed	to	differentiate	samples	depends	on	the	nature	of	the	studies
• Unique	DNA	barcodes	can	be	incorporated	into	your	amplicons	to	differentiate	
samples
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• QIIME	(http://qiime.org)

• Mothur (http://www.mothur.org)



Bioinformatics
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Overall	Bioinformatics	Workflow
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QIIME	versus	MOTHUR
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QIIME Mothur

A	python	interface	to glue	together	many	programs Single	program	with	minimal	external	dependency

Wrappers	for	existing	programs Reimplementation	of	popular algorithms

Large number	of	dependencies	/	VM	available Easy to	install	and	setup;	work	best	on	single	multi-core	server	
with	lots	of	memory

More	scalable Less	scalable	

Steeper	learning	curve	but	more	flexible	workflow	if	you can	
write	your	own	scripts

Easy	to	learn	and	works	the	best	with	built-in	tools

http://www.ncbi.nlm.nih.gov/pubmed/24060131 http://www.mothur.org/wiki/MiSeq_SOP
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• Goal:	Identify	the	relative	abundance	of	different	microbes	in	a	sample	given	
using	metagenomics
• Problems:

• Reads	are	all	mixed	together	
• Reads	can	be	short	(~100bp)
• Lateral	gene	transfer

• Two	broad	approaches
1. Binning	Based
2. Marker	Based	



Metagenomics
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• Attempts	to	“bin”	reads	into	the	genome	from	which	they	originated
• Composition-based

• Uses	GC	composition	or	k-mers (e.g.	Naïve	Bayes	Classifier)
• Generally	not	very	precise	and	not	recommended

• Sequence-based
• Compare	reads	to	large	reference	database	using	BLAST	(or	some	other	similarity	search	
method)
• Reads	are	assigned	based	on	“Best-hit”	or	“Lowest	Common	Ancestor”	approach



LCA
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• Use	all	BLAST	hits	above	a	threshold	and	assign	taxonomy	at	the	lowest	level	in	the	tree	
which	covers	these	taxa.

• Notable	Examples:
• MEGAN:	http://ab.inf.uni-tuebingen.de/software/megan5/

• One	of	the	first	metagenomic tools
• Does	functional	profiling	too!

• MG-RAST:	https://metagenomics.anl.gov/
• Web-based	pipeline	(might	need	to	wait	awhile	for	results)

• Kraken:	https://ccb.jhu.edu/software/kraken/
• Fastest	binning	approach	to	date	and	very	accurate.	
• Large	computing	requirements	(e.g.	>128GB	RAM)



Metagenomic Assembly

Institute for Systems Genomics: 
Computational Biology Core

bioinformatics.uconn.edu

• “MetaSPAdes showed	the	overall	best	assembly	size	statistics	while	also	
capturing	a	relatively	large	fraction	of	the	expected	diversity.	The	usage	of	this	
tool	is	relatively	simple	and	convenient,	being	basically	identical	to	that	of	
SPAdes,	and	largely	flexible	regarding	the	format	of	the	input	data.	A	drawback	
may	be	the	reduced	sensitivity	for	micro	diversity.	However,	for	the	majority	of	
metagenome	research	questions,	accurate	and	representative	consensus	
genomes	of	species	should	be	more	than	sufficient. ”


